Chapter 1

Basics of Geometry

Section 6
Angle Pair Relationships

Two angles are __vertical angles__ if their sides form two pairs of opposite rays. (PERFECT X)

Two adjacent angles are a \qquad linear pair \qquad if their noncommon sides are opposite rays.

<1 and <3 are vertical angles.
<2 and <4 are vertical angles.

<5 and <6 are a linear pair.

In this book, you can assume from a diagram that two adjacent angles form a linear pair if the noncommon sides appear to lie on the same line.

Example 1: Identifying Vertical Angles and Linear Pairs

a. Are <2 and <3 a linear pair? no
a. Are <3 and <4 a linear pair? yes
a. Are <1 and <3 vertical angles? no (no perfect X)
a. Are <2 and <4 vertical angles? no (no perfect X)

Note:

1) Vertical angles are congruent
2) The sum of the measures of angles that form a linear pair is 180°.

We will discuss this more in Chapter 2.

Example 2: Finding Angle Measures

In the stair railing shown at the right, <6 has a measure of 130°. Find the measures of the other three angles.

$$
\begin{aligned}
& \mathrm{m}<7 \rightarrow 50^{*} \\
& \mathrm{~m}<8 \rightarrow 130^{*} \\
& \mathrm{~m}<5 \rightarrow 50^{*}
\end{aligned}
$$

(linear pair w/ <6 \rightarrow 180-130)
(vertical angle w/ <6)
(vertical angle w/ <7)
OR (linear pair w/ $<6 \rightarrow 180-130$)

Example 3: Finding Angle Measures Solve for x and y. Then find the angle measures.

$$
\begin{gathered}
3 x+5+x+15=180 \\
4 x+2 \neq=180 \\
-20-20 \\
\frac{4 x}{4}=\frac{160}{4} \\
x=40
\end{gathered}
$$

$$
\begin{array}{r}
y+20+4 y-15=180 \\
5 y+5=180 \\
5 y=\frac{175}{5} \\
5 y=35
\end{array}
$$

GOAL 2: Complementary and Supplementary Angles

Two angles are \qquad complementary \qquad if the sum of their measures is 90°. Each angle is the \qquad complement \qquad of the other. Complementary angles can be adjacent or nonadjacent.

Two angles are __supplementary __ if the sum of their measures is 180°. Each angle is the __supplement _ of the other. Supplementary angles can be adjacent or nonadjacent.

complementary adjacent

complementary nonadjacent

supplementary adjacent

supplementary nonadjacent

Example 4: Identifying Angles

State whether the two angles are complementary, supplementary, or neither.

Example 5: Finding Measures of Complements and Supplements

a. Given that $<A$ is a complement of $<C$ and $m<A=47^{\circ}$, find $m<C$.

$$
\begin{aligned}
& 90-47=43 \\
& m<C=43^{*}
\end{aligned}
$$

b. Given that $<P$ is a supplement of $\angle R$ and $m<R=36^{\circ}$, find $m<P$.

$$
\begin{aligned}
& 180-36=144 \\
& m<P=144^{*}
\end{aligned}
$$

Example 6: Finding the Measure of a Complement * *
$<W$ and $<Z$ are complementary. The measure of $<Z$ is five times the measure $<\mathrm{W}$. Find $\mathrm{m}<\mathrm{W}$.

$$
\begin{array}{rl}
\omega+z=90 & z=5 \omega \\
\omega+5 \omega=90 & \\
\frac{6 \omega}{6}=\frac{90}{6} & m \angle \omega=15^{\circ} \\
\omega=15 & m \angle z=75^{\circ}
\end{array}
$$

